Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5278, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644049

RESUMO

Mobility of transposable elements (TEs) frequently leads to insertional mutations in functional DNA regions. In the potentially immortal germline, TEs are effectively suppressed by the Piwi-piRNA pathway. However, in the genomes of ageing somatic cells lacking the effects of the pathway, TEs become increasingly mobile during the adult lifespan, and their activity is associated with genomic instability. Whether the progressively increasing mobilization of TEs is a cause or a consequence of ageing remains a fundamental problem in biology. Here we show that in the nematode Caenorhabditis elegans, the downregulation of active TE families extends lifespan. Ectopic activation of Piwi proteins in the soma also promotes longevity. Furthermore, DNA N6-adenine methylation at TE stretches gradually rises with age, and this epigenetic modification elevates their transcription as the animal ages. These results indicate that TEs represent a novel genetic determinant of ageing, and that N6-adenine methylation plays a pivotal role in ageing control.


Assuntos
Elementos de DNA Transponíveis , Longevidade , Animais , Longevidade/genética , Elementos de DNA Transponíveis/genética , Caenorhabditis elegans/genética , Regulação para Baixo/genética , Adenina
2.
Cells ; 12(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36899920

RESUMO

Background. The dual role of GCs has been observed in breast cancer; however, due to many concomitant factors, GR action in cancer biology is still ambiguous. In this study, we aimed to unravel the context-dependent action of GR in breast cancer. Methods. GR expression was characterized in multiple cohorts: (1) 24,256 breast cancer specimens on the RNA level, 220 samples on the protein level and correlated with clinicopathological data; (2) oestrogen receptor (ER)-positive and -negative cell lines were used to test for the presence of ER and ligand, and the effect of the GRß isoform following GRα and GRß overexpression on GR action, by in vitro functional assays. Results. We found that GR expression was higher in ER- breast cancer cells compared to ER+ ones, and GR-transactivated genes were implicated mainly in cell migration. Immunohistochemistry showed mostly cytoplasmic but heterogenous staining irrespective of ER status. GRα increased cell proliferation, viability, and the migration of ER- cells. GRß had a similar effect on breast cancer cell viability, proliferation, and migration. However, the GRß isoform had the opposite effect depending on the presence of ER: an increased dead cell ratio was found in ER+ breast cancer cells compared to ER- ones. Interestingly, GRα and GRß action did not depend on the presence of the ligand, suggesting the role of the "intrinsic", ligand-independent action of GR in breast cancer. Conclusions. Staining differences using different GR antibodies may be the reason behind controversial findings in the literature regarding the expression of GR protein and clinicopathological data. Therefore, caution in the interpretation of immunohistochemistry should be applied. By dissecting the effects of GRα and GRß, we found that the presence of the GR in the context of ER had a different effect on cancer cell behaviour, but independently of ligand availability. Additionally, GR-transactivated genes are mostly involved in cell migration, which raises GR's importance in disease progression.


Assuntos
Neoplasias da Mama , Glucocorticoides , Humanos , Feminino , Glucocorticoides/farmacologia , Ligantes , Isoformas de Proteínas
3.
J Clin Endocrinol Metab ; 107(11): 3066-3079, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36059148

RESUMO

CONTEXT: DNA demethylation and inhibitory effects of aspirin on pituitary cell proliferation have been demonstrated. OBJECTIVE: Our aim was to clarify the molecular mechanisms behind the aspirin-related effects in pituitary cells. METHODS: DNA methylome and whole transcriptome profile were investigated in RC-4B/C and GH3 pituitary cell lines upon aspirin treatment. Effects of aspirin and a demethylation agent, decitabine, were further tested in vitro. PTTG1 expression in 41 human PitNET samples and whole genome gene and protein expression data of 76 PitNET and 34 control samples (available in Gene Expression Omnibus) were evaluated. RESULTS: Aspirin induced global DNA demethylation and consequential transcriptome changes. Overexpression of Tet enzymes and their cofactor Uhrf2 were identified behind the increase of 5-hydroxymethylcytosine (5hmC). Besides cell cycle, proliferation, and migration effects that were validated by functional experiments, aspirin increased Tp53 activity through p53 acetylation and decreased E2f1 activity. Among the p53 controlled genes, Pttg1 and its interacting partners were downregulated upon aspirin treatment by inhibiting Pttg1 promoter activity. 5hmC positively correlated with Tet1-3 and Tp53 expression, and negatively correlated with Pttg1 expression, which was reinforced by the effect of decitabine. Additionally, high overlap (20.15%) was found between aspirin-regulated genes and dysregulated genes in PitNET tissue samples. CONCLUSION: A novel regulatory network has been revealed, in which aspirin regulated global demethylation, Tp53 activity, and Pttg1 expression along with decreased cell proliferation and migration. 5hmC, a novel tissue biomarker in PitNET, indicated aspirin antitumoral effect in vitro as well. Our findings suggest the potential beneficial effect of aspirin in PitNET.


Assuntos
Adenoma , Neoplasias Hipofisárias , Humanos , Adenoma/tratamento farmacológico , Adenoma/genética , Aspirina/farmacologia , Decitabina , Oxigenases de Função Mista/metabolismo , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163370

RESUMO

Pheochromocytomas and paragangliomas are the most heritable endocrine tumors. In addition to the inherited mutation other driver mutations have also been identified in tumor tissues. All these genetic alterations are clustered in distinct groups which determine the pathomechanisms. Most of these tumors are benign and their surgical removal will resolve patient management. However, 5-15% of them are malignant and therapeutical possibilities for them are limited. This review provides a brief insight about the tumorigenesis associated with pheochromocytomas/paragangliomas in order to present them as potential therapeutical targets.


Assuntos
Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/terapia , Predisposição Genética para Doença , Paraganglioma/genética , Feocromocitoma/genética , Feocromocitoma/terapia , Carcinogênese/genética , Carcinogênese/patologia , Humanos , Mosaicismo , Mutação/genética
5.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445642

RESUMO

Endocytosis provides the cellular nutrition and homeostasis of organisms, but pathogens often take advantage of this entry point to infect host cells. This is counteracted by phagocytosis that plays a key role in the protection against invading microbes both during the initial engulfment of pathogens and in the clearance of infected cells. Phagocytic cells balance two vital functions: preventing the accumulation of cell corpses to avoid pathological inflammation and autoimmunity, whilst maintaining host defence. In this review, we compare elements of phagocytosis in mammals and the nematode Caenorhabditis elegans. Initial recognition of infection requires different mechanisms. In mammals, pattern recognition receptors bind pathogens directly, whereas activation of the innate immune response in the nematode rather relies on the detection of cellular damage. In contrast, molecules involved in efferocytosis-the engulfment and elimination of dying cells and cell debris-are highly conserved between the two species. Therefore, C. elegans is a powerful model to research mechanisms of the phagocytic machinery. Finally, we show that both mammalian and worm studies help to understand how the two phagocytic functions are interconnected: emerging data suggest the activation of innate immunity as a consequence of defective apoptotic cell clearance.


Assuntos
Apoptose , Imunidade Inata/imunologia , Fagócitos/fisiologia , Fagocitose , Animais , Caenorhabditis elegans , Humanos , Transdução de Sinais
6.
Dis Model Mech ; 13(10)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32859697

RESUMO

The conserved B-subunit of succinate dehydrogenase (SDH) participates in the tricarboxylic acid cycle (TCA) cycle and mitochondrial electron transport. The Arg230His mutation in SDHB causes heritable pheochromocytoma/paraganglioma (PPGL). In Caenorhabditiselegans, we generated an in vivo PPGL model (SDHB-1 Arg244His; equivalent to human Arg230His), which manifests delayed development, shortened lifespan, attenuated ATP production and reduced mitochondrial number. Although succinate is elevated in both missense and null sdhb-1(gk165) mutants, transcriptomic comparison suggests very different causal mechanisms that are supported by metabolic analysis, whereby only Arg244His (not null) worms demonstrate elevated lactate/pyruvate levels, pointing to a missense-induced, Warburg-like aberrant glycolysis. In silico predictions of the SDHA-B dimer structure demonstrate that Arg230His modifies the catalytic cleft despite the latter's remoteness from the mutation site. We hypothesize that the Arg230His SDHB mutation rewires metabolism, reminiscent of metabolic reprogramming in cancer. Our tractable model provides a novel tool to investigate the metastatic propensity of this familial cancer and our approach could illuminate wider SDH pathology.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Ferro-Enxofre/genética , Proteínas Mitocondriais/genética , Mutação/genética , Paraganglioma/genética , Succinato Desidrogenase/genética , Trifosfato de Adenosina/biossíntese , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/química , Ciclo do Ácido Cítrico/genética , Sequência Conservada , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Glicólise/genética , Humanos , Proteínas Ferro-Enxofre/química , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Fenótipo , Subunidades Proteicas/genética , Interferência de RNA , Succinato Desidrogenase/química
7.
Nucleic Acids Res ; 46(17): e105, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29924347

RESUMO

RNA interference (RNAi) technology used for the functional analysis of Caenorhabditis elegans genes frequently leads to phenotypes with low penetrance or even proves completely ineffective. The methods previously developed to solve this problem were built on mutant genetic backgrounds, such as those defective for rrf-3, in which endogenous RNAi pathways are overexpressed. These mutations, however, interferes with many other genetic pathways so that the detected phenotype cannot always be clearly linked to the RNAi-exposed gene. In addition, using RNAi-overexpressing mutant backgrounds requires time-consuming genetic crossing. Here, we present an improved RNAi vector that produces specific double-stranded RNA species only, and thereby significantly stronger phenotypes than the standard gene knockdown vector. The further advantage of the new RNAi vector is that the detected phenotype can be specifically linked to the gene silenced. We also created a new all-in-one C. elegans Cas9 vector whose spacer sequence is much easier to replace. Both new vectors include a novel CRISPR/Cas9-based auto-cloning vector system rendering needless the use of restriction and ligase enzymes in generating DNA constructs. This novel, efficient RNAi and auto-cloning Cas9 systems can be easily adapted to any other genetic model.


Assuntos
Sistemas CRISPR-Cas/fisiologia , Caenorhabditis elegans/genética , Clonagem Molecular/métodos , Vetores Genéticos , Interferência de RNA/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica/métodos , Técnicas de Silenciamento de Genes/métodos , Vetores Genéticos/síntese química , Vetores Genéticos/química , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Homeostase/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Pesquisa
8.
Lab Invest ; 98(2): 182-189, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28920944

RESUMO

Abnormal regulation of cell migration and altered rearrangement of the cytoskeleton are fundamental properties of metastatic cells. The first identified metastasis suppressor NM23-H1, which displays nucleoside-diphosphate kinase (NDPK) activity is involved in these processes. NM23-H1 inhibits the migratory and invasive potential of some cancer cells. Correspondingly, numerous invasive cancer cell lines (eg, breast, colon, oral, hepatocellular carcinoma, and melanoma) display low endogenous NM23 levels. In this review, we summarize mechanisms, which are linked to the anti-metastatic activity of NM23. In human cancer cell lines NM23-H1 was shown to regulate cytoskeleton dynamics through inactivation of Rho/Rac-type GTPases. The Drosophila melanogaster NM23 homolog abnormal wing disc (AWD) controls tracheal and border cell migration. The molecular function of AWD is well characterized in both processes as a GTP supplier of Shi/Dynamin whereby AWD regulates the level of chemotactic receptors on the surface of migrating cells through receptor internalization, by its endocytic function. Our group studied the role of the sole group I NDPK, NDK-1 in distal tip cell (DTC) migration in Caenorhabditis elegans. In the absence of NDK-1 the migration of DTCs is incomplete. A half dosage of NDPK as present in ndk-1 (+/-) heterozygotes results in extra turns and overshoots of migrating gonad arms. Conversely, an elevated NDPK level also leads to incomplete gonadal migration owing to a premature stop of DTCs in the third phase of migration, where NDK-1 acts. We propose that NDK-1 exerts a dosage-dependent effect on the migration of DTCs. Our data derived from DTC migration in C. elegans is consistent with data on AWD's function in Drosophila. The combined data suggest that NDPK enzymes control the availability of surface receptors to regulate cell-sensing cues during cell migration. The dosage of NDPKs may be a coupling factor in cell migration by modulating the efficiency of receptor recycling.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Movimento Celular/genética , Mutação , Nucleosídeo NM23 Difosfato Quinases/genética , Animais , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/metabolismo , Heterozigoto , Humanos , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...